ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2510.26001
130
0
v1v2 (latest)

Larger Hausdorff Dimension in Scanning Pattern Facilitates Mamba-Based Methods in Low-Light Image Enhancement

29 October 2025
Xinhua Wang
Caibo Feng
Xiangjun Fu
Chunxiao Liu
    Mamba
ArXiv (abs)PDFHTML
Main:8 Pages
7 Figures
Bibliography:2 Pages
2 Tables
Abstract

We propose an innovative enhancement to the Mamba framework by increasing the Hausdorff dimension of its scanning pattern through a novel Hilbert Selective Scan mechanism. This mechanism explores the feature space more effectively, capturing intricate fine-scale details and improving overall coverage. As a result, it mitigates information inconsistencies while refining spatial locality to better capture subtle local interactions without sacrificing the model's ability to handle long-range dependencies. Extensive experiments on publicly available benchmarks demonstrate that our approach significantly improves both the quantitative metrics and qualitative visual fidelity of existing Mamba-based low-light image enhancement methods, all while reducing computational resource consumption and shortening inference time. We believe that this refined strategy not only advances the state-of-the-art in low-light image enhancement but also holds promise for broader applications in fields that leverage Mamba-based techniques.

View on arXiv
Comments on this paper