All Papers
Title |
|---|
Title |
|---|

The launch of Grokipedia - an AI-generated encyclopedia developed by Elon Musk's xAI - was presented as a response to perceived ideological and structural biases in Wikipedia, aiming to produce "truthful" entries using the Grok large language model. Yet whether an AI-driven alternative can escape the biases and limitations of human-edited platforms remains unclear. This study conducts a large-scale computational comparison of more than 17,000 matched article pairs from the 20,000 most-edited English Wikipedia pages. Using metrics spanning lexical richness, readability, reference density, structural features, and semantic similarity, we assess how closely the two platforms align in form and substance. We find that Grokipedia articles are substantially longer and contain significantly fewer references per word. Moreover, Grokipedia's content divides into two distinct groups: one that remains semantically and stylistically aligned with Wikipedia, and another that diverges sharply. Among the dissimilar articles, we observe a systematic rightward shift in the political bias of cited news sources, concentrated primarily in entries related to politics, history, and religion. These findings suggest that AI-generated encyclopedic content diverges from established editorial norms-favouring narrative expansion over citation-based verification. The implications highlight emerging tensions around transparency, provenance, and the governance of knowledge in an era of automated text generation.
View on arXiv