154
v1v2 (latest)

Hierarchical Fusion of Local and Global Visual Features with Mixture-of-Experts for Remote Sensing Image Scene Classification

Main:5 Pages
8 Figures
Bibliography:1 Pages
2 Tables
Abstract

Remote sensing image scene classification remains a challenging task, primarily due to the complex spatial structures and multi-scale characteristics of ground objects. Although CNN-based methods excel at extracting local inductive biases, and Mamba-based approaches demonstrate impressive capabilities in efficiently capturing global sequential context, relying on a single paradigm restricts the model's ability to simultaneously characterize fine-grained textures and complex spatial structures. To tackle this, we propose a parallel heterogeneous encoder, a hierarchical fusion module designed to achieve effective local-global co-representation. It consists of two parallel pathways: a local visual encoder for extracting multi-scale local visual features, and a global visual encoder for capturing efficient global visual features. The core innovation lies in its hierarchical fusion module, which progressively aggregates multi-scale features from both pathways, enabling dynamic cross-level feature interaction and contextual reconstruction to produce highly discriminative representations. These fused features are then adaptively routed through a mixture-of-experts classifier head, which dynamically dispatches them to the most suitable experts for fine-grained scene recognition. Experiments on AID, NWPU-RESISC45, and UC Merced show that our model achieves 93.72%, 95.54%, and 96.92% accuracy, surpassing SOTA methods with an optimal balance of performance and efficiency. Code is available atthis https URL.

View on arXiv
Comments on this paper