ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.00244
155
0

Hyperbolic Optimal Transport

Mathematics, Computation and Geometry of Data (MCGD), 2025
31 October 2025
Yan Bin Ng
Xianfeng Gu
    OT
ArXiv (abs)PDFHTML
Main:58 Pages
22 Figures
Bibliography:6 Pages
1 Tables
Appendix:1 Pages
Abstract

The optimal transport (OT) problem aims to find the most efficient mapping between two probability distributions under a given cost function, and has diverse applications in many fields such as machine learning, computer vision and computer graphics. However, existing methods for computing optimal transport maps are primarily developed for Euclidean spaces and the sphere. In this paper, we explore the problem of computing the optimal transport map in hyperbolic space, which naturally arises in contexts involving hierarchical data, networks, and multi-genus Riemann surfaces. We propose a novel and efficient algorithm for computing the optimal transport map in hyperbolic space using a geometric variational technique by extending methods for Euclidean and spherical geometry to the hyperbolic setting. We also perform experiments on synthetic data and multi-genus surface models to validate the efficacy of the proposed method.

View on arXiv
Comments on this paper