ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.00700
112
0

Privacy-Aware Time Series Synthesis via Public Knowledge Distillation

1 November 2025
Penghang Liu
Haibei Zhu
Eleonora Kreacic
Svitlana Vyetrenko
    AI4TS
ArXiv (abs)PDFHTML
Main:15 Pages
9 Figures
Bibliography:5 Pages
7 Tables
Appendix:4 Pages
Abstract

Sharing sensitive time series data in domains such as finance, healthcare, and energy consumption, such as patient records or investment accounts, is often restricted due to privacy concerns. Privacy-aware synthetic time series generation addresses this challenge by enforcing noise during training, inherently introducing a trade-off between privacy and utility. In many cases, sensitive sequences is correlated with publicly available, non-sensitive contextual metadata (e.g., household electricity consumption may be influenced by weather conditions and electricity prices). However, existing privacy-aware data generation methods often overlook this opportunity, resulting in suboptimal privacy-utility trade-offs. In this paper, we present Pub2Priv, a novel framework for generating private time series data by leveraging heterogeneous public knowledge. Our model employs a self-attention mechanism to encode public data into temporal and feature embeddings, which serve as conditional inputs for a diffusion model to generate synthetic private sequences. Additionally, we introduce a practical metric to assess privacy by evaluating the identifiability of the synthetic data. Experimental results show that Pub2Priv consistently outperforms state-of-the-art benchmarks in improving the privacy-utility trade-off across finance, energy, and commodity trading domains.

View on arXiv
Comments on this paper