ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.01490
70
0

Synthetic Eggs in Many Baskets: The Impact of Synthetic Data Diversity on LLM Fine-Tuning

3 November 2025
Max Schaffelder
Albert Gatt
    SyDa
ArXiv (abs)PDFHTML
Main:8 Pages
17 Figures
Bibliography:4 Pages
31 Tables
Appendix:14 Pages
Abstract

As synthetic data becomes widely used in language model development, understanding its impact on model behavior is crucial. This paper investigates the impact of the diversity of sources of synthetic data on fine-tuned large language models. We focus on three key dimensions: distribution collapse, adversarial robustness, and self-preference bias. Our findings reveal that fine-tuning models on synthetic data from diverse sources can mitigate distribution collapse, preserving the breadth of the output distribution and the diversity of the output text. Furthermore, while both human and synthetic fine-tuning data can remove safeguards, the latter preserves higher output quality, thus making outputs potentially more usable and dangerous. Finally, fine-tuning reduces self-preference bias, with human data being the most effective, followed by multi-source synthetic data.

View on arXiv
Comments on this paper