ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.02414
140
0

A New Perspective on Precision and Recall for Generative Models

4 November 2025
Benjamin Sykes
Loïc Simon
Julien Rabin
Jalal Fadili
    EGVM
ArXiv (abs)PDFHTML
Main:39 Pages
15 Figures
Bibliography:2 Pages
1 Tables
Abstract

With the recent success of generative models in image and text, the question of their evaluation has recently gained a lot of attention. While most methods from the state of the art rely on scalar metrics, the introduction of Precision and Recall (PR) for generative model has opened up a new avenue of research. The associated PR curve allows for a richer analysis, but their estimation poses several challenges. In this paper, we present a new framework for estimating entire PR curves based on a binary classification standpoint. We conduct a thorough statistical analysis of the proposed estimates. As a byproduct, we obtain a minimax upper bound on the PR estimation risk. We also show that our framework extends several landmark PR metrics of the literature which by design are restrained to the extreme values of the curve. Finally, we study the different behaviors of the curves obtained experimentally in various settings.

View on arXiv
Comments on this paper