ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.03155
77
0

Generative Sequential Recommendation via Hierarchical Behavior Modeling

5 November 2025
Zhefan Wang
Guokai Yan
Jinbei Yu
Siyu Gu
Jingyan Chen
Peng Jiang
Zhiqiang Guo
Min Zhang
ArXiv (abs)PDFHTMLGithub (3★)
Main:9 Pages
5 Figures
Bibliography:3 Pages
12 Tables
Appendix:1 Pages
Abstract

Recommender systems in multi-behavior domains, such as advertising and e-commerce, aim to guide users toward high-value but inherently sparse conversions. Leveraging auxiliary behaviors (e.g., clicks, likes, shares) is therefore essential. Recent progress on generative recommendations has brought new possibilities for multi-behavior sequential recommendation. However, existing generative approaches face two significant challenges: 1) Inadequate Sequence Modeling: capture the complex, cross-level dependencies within user behavior sequences, and 2) Lack of Suitable Datasets: publicly available multi-behavior recommendation datasets are almost exclusively derived from e-commerce platforms, limiting the validation of feasibility in other domains, while also lacking sufficient side information for semantic ID generation. To address these issues, we propose a novel generative framework, GAMER (Generative Augmentation and Multi-lEvel behavior modeling for Recommendation), built upon a decoder-only backbone. GAMER introduces a cross-level interaction layer to capture hierarchical dependencies among behaviors and a sequential augmentation strategy that enhances robustness in training. To further advance this direction, we collect and release ShortVideoAD, a large-scale multi-behavior dataset from a mainstream short-video platform, which differs fundamentally from existing e-commerce datasets and provides pretrained semantic IDs for research on generative methods. Extensive experiments show that GAMER consistently outperforms both discriminative and generative baselines across multiple metrics.

View on arXiv
Comments on this paper