ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.03260
72
0

Enhancing Medical Image Segmentation via Heat Conduction Equation

5 November 2025
Rong Wu
Yim-Sang Yu
    Mamba
ArXiv (abs)PDFHTMLGithub
Main:4 Pages
3 Figures
Bibliography:1 Pages
3 Tables
Abstract

Medical image segmentation has been significantly advanced by deep learning architectures, notably U-Net variants. However, existing models struggle to achieve efficient global context modeling and long-range dependency reasoning under practical computational budgets simultaneously. In this work, we propose a novel hybrid architecture utilizing U-Mamba with Heat Conduction Equation. Our model combines Mamba-based state-space modules for efficient long-range reasoning with Heat Conduction Operators (HCOs) in the bottleneck layers, simulating frequency-domain thermal diffusion for enhanced semantic abstraction. Experimental results on multimodal abdominal CT and MRI datasets demonstrate that the proposed model consistently outperforms strong baselines, validating its effectiveness and generalizability. It suggest that blending state-space dynamics with heat-based global diffusion offers a scalable and interpretable solution for medical segmentation tasks.

View on arXiv
Comments on this paper