ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.03354
137
0

Generative Artificial Intelligence in Bioinformatics: A Systematic Review of Models, Applications, and Methodological Advances

5 November 2025
Riasad Alvi
Sayeem Been Zaman
Wasimul Karim
Arefin Ittesafun Abian
M. R
Saddam Mukta
Md Rafi Ur Rashid
M. Islam
Yakub Sebastian
Sami Azam
    AI4CE
ArXiv (abs)PDFHTML
Main:32 Pages
13 Figures
Bibliography:8 Pages
6 Tables
Abstract

Generative artificial intelligence (GenAI) has become a transformative approach in bioinformatics that often enables advancements in genomics, proteomics, transcriptomics, structural biology, and drug discovery. To systematically identify and evaluate these growing developments, this review proposed six research questions (RQs), according to the preferred reporting items for systematic reviews and meta-analysis methods. The objective is to evaluate impactful GenAI strategies in methodological advancement, predictive performance, and specialization, and to identify promising approaches for advanced modeling, data-intensive discovery, and integrative biological analysis. RQ1 highlights diverse applications across multiple bioinformatics subfields (sequence analysis, molecular design, and integrative data modeling), which demonstrate superior performance over traditional methods through pattern recognition and output generation. RQ2 reveals that adapted specialized model architectures outperformed general-purpose models, an advantage attributed to targeted pretraining and context-aware strategies. RQ3 identifies significant benefits in the bioinformatics domains, focusing on molecular analysis and data integration, which improves accuracy and reduces errors in complex analysis. RQ4 indicates improvements in structural modeling, functional prediction, and synthetic data generation, validated by established benchmarks. RQ5 suggests the main constraints, such as the lack of scalability and biases in data that impact generalizability, and proposes future directions focused on robust evaluation and biologically grounded modeling. RQ6 examines that molecular datasets (such as UniProtKB and ProteinNet12), cellular datasets (such as CELLxGENE and GTEx) and textual resources (such as PubMedQA and OMIM) broadly support the training and generalization of GenAI models.

View on arXiv
Comments on this paper