184

Adaptive Temporal Refinement: Continuous Depth Allocation and Distance Regression for Efficient Action Localization

Main:8 Pages
7 Figures
Bibliography:2 Pages
25 Tables
Appendix:15 Pages
Abstract

Temporal action localization requires precise boundary detection; however, current methods apply uniform computation despite significant variations in difficulty across boundaries. We present two complementary contributions. First, Boundary Distance Regression (BDR) provides information-theoretically optimal localization through signed-distance regression rather than classification, achieving 43\% sharper boundary peaks. BDR retrofits to existing methods with approximately 50 lines of code, yielding consistent 1.8 to 3.1\% mAP@0.7 improvements across diverse architectures. Second, Adaptive Temporal Refinement (ATR) allocates computation via continuous depth selection τ[0,1]\tau \in [0,1], enabling end-to-end differentiable optimization without reinforcement learning. On THUMOS14, ATR achieves 56.5\% mAP@0.7 at 162G FLOPs, compared to 53.6\% at 198G for uniform processing, providing a 2.9\% improvement with 18\% less compute. Gains scale with boundary heterogeneity, showing 4.2\% improvement on short actions. Training cost is mitigated via knowledge distillation, with lightweight students retaining 99\% performance at baseline cost. Results are validated across four benchmarks with rigorous statistical testing.

View on arXiv
Comments on this paper