All Papers
Title |
|---|
Title |
|---|

A major bottleneck of standard auto-regressive large language models is that their inference process is inherently sequential, resulting in very long and costly inference times. To circumvent this, practitioners proposed a class of language models called diffusion language models, of which the masked diffusion model (MDM) is the most successful. The MDM is able to sample tokens out-of-order and, ostensibly, many tokens at once and in parallel. However, there is very limited rigorous understanding of how much parallel sampling these models can perform without noticeable degradation in their sampling performance. Prior work of Li and Cai obtained some preliminary bounds, but these are not tight for many natural classes of distributions. In this work, we give a new, exact characterization of the expected divergence between the true distribution and the sampled distribution, for any distribution and any unmasking schedule for the sampler, showing an elegant connection to the theory of univariate function approximation.
View on arXiv