ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.05102
144
0

Quantifying the Risk of Transferred Black Box Attacks

7 November 2025
Disesdi Susanna Cox
Niklas Bunzel
    AAML
ArXiv (abs)PDFHTML
Main:5 Pages
1 Figures
Bibliography:3 Pages
Abstract

Neural networks have become pervasive across various applications, including security-related products. However, their widespread adoption has heightened concerns regarding vulnerability to adversarial attacks. With emerging regulations and standards emphasizing security, organizations must reliably quantify risks associated with these attacks, particularly regarding transferred adversarial attacks, which remain challenging to evaluate accurately. This paper investigates the complexities involved in resilience testing against transferred adversarial attacks. Our analysis specifically addresses black-box evasion attacks, highlighting transfer-based attacks due to their practical significance and typically high transferability between neural network models. We underline the computational infeasibility of exhaustively exploring high-dimensional input spaces to achieve complete test coverage. As a result, comprehensive adversarial risk mapping is deemed impractical. To mitigate this limitation, we propose a targeted resilience testing framework that employs surrogate models strategically selected based on Centered Kernel Alignment (CKA) similarity. By leveraging surrogate models exhibiting both high and low CKA similarities relative to the target model, the proposed approach seeks to optimize coverage of adversarial subspaces. Risk estimation is conducted using regression-based estimators, providing organizations with realistic and actionable risk quantification.

View on arXiv
Comments on this paper