ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.05518
124
0

Retracing the Past: LLMs Emit Training Data When They Get Lost

27 October 2025
Myeongseob Ko
Nikhil Reddy Billa
Adam Nguyen
Charles Fleming
Ming Jin
R. Jia
    AAML
ArXiv (abs)PDFHTML
Main:9 Pages
4 Figures
Bibliography:2 Pages
7 Tables
Appendix:11 Pages
Abstract

The memorization of training data in large language models (LLMs) poses significant privacy and copyright concerns. Existing data extraction methods, particularly heuristic-based divergence attacks, often exhibit limited success and offer limited insight into the fundamental drivers of memorization leakage. This paper introduces Confusion-Inducing Attacks (CIA), a principled framework for extracting memorized data by systematically maximizing model uncertainty. We empirically demonstrate that the emission of memorized text during divergence is preceded by a sustained spike in token-level prediction entropy. CIA leverages this insight by optimizing input snippets to deliberately induce this consecutive high-entropy state. For aligned LLMs, we further propose Mismatched Supervised Fine-tuning (SFT) to simultaneously weaken their alignment and induce targeted confusion, thereby increasing susceptibility to our attacks. Experiments on various unaligned and aligned LLMs demonstrate that our proposed attacks outperform existing baselines in extracting verbatim and near-verbatim training data without requiring prior knowledge of the training data. Our findings highlight persistent memorization risks across various LLMs and offer a more systematic method for assessing these vulnerabilities.

View on arXiv
Comments on this paper