60
v1v2 (latest)

Language Generation: Complexity Barriers and Implications for Learning

Main:9 Pages
Bibliography:2 Pages
Abstract

Kleinberg and Mullainathan showed that language generation in the limit is always possible at the level of computability: given enough positive examples, a learner can eventually generate data indistinguishable from a target language. However, such existence results do not address feasibility. We study the sample complexity of language generation in the limit for several canonical classes of formal languages. Our results show that infeasibility already appears for context-free and regular languages, and persists even for strict subclasses such as locally threshold testable languages, as well as for incomparable classes such as non-erasing pattern languages, a well-studied class in the theory of language identification. Overall, our results establish a clear gap between the theoretical possibility of language generation in the limit and its computational feasibility.

View on arXiv
Comments on this paper