54

Towards Resource-Efficient Multimodal Intelligence: Learned Routing among Specialized Expert Models

Main:12 Pages
6 Figures
Bibliography:3 Pages
7 Tables
Abstract

As AI moves beyond text, large language models (LLMs) increasingly power vision, audio, and document understanding; however, their high inference costs hinder real-time, scalable deployment. Conversely, smaller open-source models offer cost advantages but struggle with complex or multimodal queries. We introduce a unified, modular framework that intelligently routes each query - textual, multimodal, or complex - to the most fitting expert model, using a learned routing network that balances cost and quality. For vision tasks, we employ a two-stage open-source pipeline optimized for efficiency and reviving efficient classical vision components where they remain SOTA for sub-tasks. On benchmarks such as Massive Multitask Language Understanding (MMLU) and Visual Question Answering (VQA), we match or exceed the performance of always-premium LLM (monolithic systems with one model serving all query types) performance, yet reduce the reliance on costly models by over 67%. With its extensible, multi-agent orchestration, we deliver high-quality, resource-efficient AI at scale.

View on arXiv
Comments on this paper