ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.06519
120
0

On the Analogy between Human Brain and LLMs: Spotting Key Neurons in Grammar Perception

9 November 2025
Sanaz Saki Norouzi
Mohammad Masjedi
Pascal Hitzler
ArXiv (abs)PDFHTML
Main:6 Pages
2 Figures
Bibliography:3 Pages
5 Tables
Appendix:3 Pages
Abstract

Artificial Neural Networks, the building blocks of AI, were inspired by the human brain's network of neurons. Over the years, these networks have evolved to replicate the complex capabilities of the brain, allowing them to handle tasks such as image and language processing. In the realm of Large Language Models, there has been a keen interest in making the language learning process more akin to that of humans. While neuroscientific research has shown that different grammatical categories are processed by different neurons in the brain, we show that LLMs operate in a similar way. Utilizing Llama 3, we identify the most important neurons associated with the prediction of words belonging to different part-of-speech tags. Using the achieved knowledge, we train a classifier on a dataset, which shows that the activation patterns of these key neurons can reliably predict part-of-speech tags on fresh data. The results suggest the presence of a subspace in LLMs focused on capturing part-of-speech tag concepts, resembling patterns observed in lesion studies of the brain in neuroscience.

View on arXiv
Comments on this paper