Bayesian Uncertainty Quantification with Anchored Ensembles for Robust EV Power Consumption Prediction
Accurate EV power estimation underpins range prediction and energy management, yet practitioners need both point accuracy and trustworthy uncertainty. We propose an anchored-ensemble Long Short-Term Memory (LSTM) with a Student-t likelihood that jointly captures epistemic (model) and aleatoric (data) uncertainty. Anchoring imposes a Gaussian weight prior (MAP training), yielding posterior-like diversity without test-time sampling, while the t-head provides heavy-tailed robustness and closed-form prediction intervals. Using vehicle-kinematic time series (e.g., speed, motor RPM), our model attains strong accuracy: RMSE 3.36 +/- 1.10, MAE 2.21 +/- 0.89, R-squared = 0.93 +/- 0.02, explained variance 0.93 +/- 0.02, and delivers well-calibrated uncertainty bands with near-nominal coverage. Against competitive baselines (Student-t MC dropout; quantile regression with/without anchoring), our method matches or improves log-scores while producing sharper intervals at the same coverage. Crucially for real-time deployment, inference is a single deterministic pass per ensemble member (or a weight-averaged collapse), eliminating Monte Carlo latency. The result is a compact, theoretically grounded estimator that couples accuracy, calibration, and systems efficiency, enabling reliable range estimation and decision-making for production EV energy management.
View on arXiv