ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.07458
160
0

REFLEX: Reference-Free Evaluation of Log Summarization via Large Language Model Judgment

6 November 2025
Priyanka Mudgal
    HILM
ArXiv (abs)PDFHTML
Main:6 Pages
3 Figures
Bibliography:1 Pages
1 Tables
Abstract

Evaluating log summarization systems is challenging due to the lack of high-quality reference summaries and the limitations of existing metrics like ROUGE and BLEU, which depend on surface-level lexical overlap. We introduce REFLEX, a reference-free evaluation metric for log summarization based on large language model (LLM) judgment. REFLEX uses LLMs as zero-shot evaluators to assess summary quality along dimensions such as relevance, informativeness, and coherence, without requiring gold-standard references or human annotations. We show that REFLEX produces stable, interpretable, and fine-grained evaluations across multiple log summarization dataset, and more effectively distinguishes model outputs than traditional metrics. REFLEX provides a scalable alternative for evaluating log summaries in real-world settings where reference data is scarce or unavailable.

View on arXiv
Comments on this paper