ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.07808
94
0
v1v2 (latest)

DI3CL: Contrastive Learning With Dynamic Instances and Contour Consistency for SAR Land-Cover Classification Foundation Model

11 November 2025
Zhongle Ren
Hui Ding
Kai Wang
B. Hou
Xingyu Luo
Weibin Li
Licheng Jiao
ArXiv (abs)PDFHTMLGithub
Main:15 Pages
10 Figures
Bibliography:3 Pages
Abstract

Although significant advances have been achieved in SAR land-cover classification, recent methods remain predominantly focused on supervised learning, which relies heavily on extensive labeled datasets. This dependency not only limits scalability and generalization but also restricts adaptability to diverse application scenarios. In this paper, a general-purpose foundation model for SAR land-cover classification is developed, serving as a robust cornerstone to accelerate the development and deployment of various downstream models. Specifically, a Dynamic Instance and Contour Consistency Contrastive Learning (DI3CL) pre-training framework is presented, which incorporates a Dynamic Instance (DI) module and a Contour Consistency (CC) module. DI module enhances global contextual awareness by enforcing local consistency across different views of the same region. CC module leverages shallow feature maps to guide the model to focus on the geometric contours of SAR land-cover objects, thereby improving structural discrimination. Additionally, to enhance robustness and generalization during pre-training, a large-scale and diverse dataset named SARSense, comprising 460,532 SAR images, is constructed to enable the model to capture comprehensive and representative features. To evaluate the generalization capability of our foundation model, we conducted extensive experiments across a variety of SAR land-cover classification tasks, including SAR land-cover mapping, water body detection, and road extraction. The results consistently demonstrate that the proposed DI3CL outperforms existing methods. Our code and pre-trained weights are publicly available at:this https URL.

View on arXiv
Comments on this paper