ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.08872
161
0

SasMamba: A Lightweight Structure-Aware Stride State Space Model for 3D Human Pose Estimation

12 November 2025
Hu Cui
Wenqiang Hua
Renjing Huang
Shurui Jia
Tessai Hayama
    Mamba
ArXiv (abs)PDFHTML
Main:8 Pages
9 Figures
Bibliography:2 Pages
6 Tables
Appendix:5 Pages
Abstract

Recently, the Mamba architecture based on State Space Models (SSMs) has gained attention in 3D human pose estimation due to its linear complexity and strong global modeling capability. However, existing SSM-based methods typically apply manually designed scan operations to flatten detected 2D pose sequences into purely temporal sequences, either locally or globally. This approach disrupts the inherent spatial structure of human poses and entangles spatial and temporal features, making it difficult to capture complex pose dependencies. To address these limitations, we propose the Skeleton Structure-Aware Stride SSM (SAS-SSM), which first employs a structure-aware spatiotemporal convolution to dynamically capture essential local interactions between joints, and then applies a stride-based scan strategy to construct multi-scale global structural representations. This enables flexible modeling of both local and global pose information while maintaining linear computational complexity. Built upon SAS-SSM, our model SasMamba achieves competitive 3D pose estimation performance with significantly fewer parameters compared to existing hybrid models. The source code is available atthis https URL.

View on arXiv
Comments on this paper