ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.09022
52
0

RadHARSimulator V2: Video to Doppler Generator

12 November 2025
Weicheng Gao
ArXiv (abs)PDFHTML
Main:16 Pages
16 Figures
Bibliography:3 Pages
Abstract

Radar-based human activity recognition (HAR) still lacks a comprehensive simulation method. Existing software is developed based on models or motion-captured data, resulting in limited flexibility. To address this issue, a simulator that directly generates Doppler spectra from recorded video footage (RadHARSimulator V2) is presented in this paper. Both computer vision and radar modules are included in the simulator. In computer vision module, the real-time model for object detection with global nearest neighbor is first used to detect and track human targets in the video. Then, the high-resolution network is used to estimate two-dimensional poses of the detected human targets. Next, the three-dimensional poses of the detected human targets are obtained by nearest matching method. Finally, smooth temporal three-dimensional pose estimation is achieved through Kalman filtering. In radar module, pose interpolation and smoothing are first achieved through the Savitzky-Golay method. Second, the delay model and the mirror method are used to simulate echoes in both free-space and through-the-wall scenarios. Then, range-time map is generated using pulse compression, moving target indication, and DnCNN. Next, Doppler-time map (DTM) is generated using short-time Fourier transform and DnCNN again. Finally, the ridge features on the DTM are extracted using the maximum local energy method. In addition, a hybrid parallel-serial neural network architecture is proposed for radar-based HAR. Numerical experiments are conducted and analyzed to demonstrate the effectiveness of the designed simulator and the proposed network model. The open-source code of this work can be found in:this https URL.

View on arXiv
Comments on this paper