46
v1v2v3 (latest)

Planning in Branch-and-Bound: Model-Based Reinforcement Learning for Exact Combinatorial Optimization

Main:10 Pages
8 Figures
Bibliography:3 Pages
9 Tables
Appendix:5 Pages
Abstract

Mixed-Integer Linear Programming (MILP) lies at the core of many real-world combinatorial optimization (CO) problems, traditionally solved by branch-and-bound (B&B). A key driver influencing B&B solvers efficiency is the variable selection heuristic that guides branching decisions. Looking to move beyond static, hand-crafted heuristics, recent work has explored adapting traditional reinforcement learning (RL) algorithms to the B&B setting, aiming to learn branching strategies tailored to specific MILP distributions. In parallel, RL agents have achieved remarkable success in board games, a very specific type of combinatorial problems, by leveraging environment simulators to plan via Monte Carlo Tree Search (MCTS). Building on these developments, we introduce Plan-and-Branch-and-Bound (PlanB&B), a model-based reinforcement learning (MBRL) agent that leverages a learned internal model of the B&B dynamics to discover improved branching strategies. Computational experiments empirically validate our approach, with our MBRL branching agent outperforming previous state-of-the-art RL methods across four standard MILP benchmarks.

View on arXiv
Comments on this paper