FlowCast: Advancing Precipitation Nowcasting with Conditional Flow Matching

Radar-based precipitation nowcasting, the task of forecasting short-term precipitation fields from previous radar images, is a critical problem for flood risk management and decision-making. While deep learning has substantially advanced this field, two challenges remain fundamental: the uncertainty of atmospheric dynamics and the efficient modeling of high-dimensional data. Diffusion models have shown strong promise by producing sharp, reliable forecasts, but their iterative sampling process is computationally prohibitive for time-critical applications. We introduce FlowCast, the first end-to-end probabilistic model leveraging Conditional Flow Matching (CFM) as a direct noise-to-data generative framework for precipitation nowcasting. Unlike hybrid approaches, FlowCast learns a direct noise-to-data mapping in a compressed latent space, enabling rapid, high-fidelity sample generation. Our experiments demonstrate that FlowCast establishes a new state-of-the-art in probabilistic performance while also exceeding deterministic baselines in predictive accuracy. A direct comparison further reveals the CFM objective is both more accurate and significantly more efficient than a diffusion objective on the same architecture, maintaining high performance with significantly fewer sampling steps. This work positions CFM as a powerful and practical alternative for high-dimensional spatiotemporal forecasting.
View on arXiv