HierRouter: Coordinated Routing of Specialized Large Language Models via Reinforcement Learning
- MoE

Large Language Models (LLMs) deliver state-of-the-art performance across many tasks but impose high computational and memory costs, limiting their deployment in resource-constrained or real-time settings. To address this, we propose HierRouter, a hierarchical routing approach that dynamically assembles inference pipelines from a pool of specialized, lightweight language models. Formulated as a finite-horizon Markov Decision Process (MDP), our approach trains a Proximal Policy Optimization (PPO)-based reinforcement learning agent to iteratively select which models to invoke at each stage of multi-hop inference. The agent conditions on the evolving context and accumulated cost to make context-aware routing decisions. Experiments with three open-source candidate LLMs across six benchmarks, including QA, code generation, and mathematical reasoning, show that HierRouter improves response quality by up to 2.4x compared to using individual models independently, while incurring only a minimal additional inference cost on average. These results highlight the promise of hierarchical routing for cost-efficient, high-performance LLM inference. All codes can be found herethis https URLNikunj-Gupta/hierouter.
View on arXiv