ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.10120
127
0

Generalizing to Unseen Disaster Events: A Causal View

13 November 2025
Philipp Seeberger
Steffen Freisinger
Tobias Bocklet
Korbinian Riedhammer
    CML
ArXiv (abs)PDFHTML
Main:4 Pages
4 Figures
Bibliography:3 Pages
4 Tables
Appendix:3 Pages
Abstract

Due to the rapid growth of social media platforms, these tools have become essential for monitoring information during ongoing disaster events. However, extracting valuable insights requires real-time processing of vast amounts of data. A major challenge in existing systems is their exposure to event-related biases, which negatively affects their ability to generalize to emerging events. While recent advancements in debiasing and causal learning offer promising solutions, they remain underexplored in the disaster event domain. In this work, we approach bias mitigation through a causal lens and propose a method to reduce event- and domain-related biases, enhancing generalization to future events. Our approach outperforms multiple baselines by up to +1.9% F1 and significantly improves a PLM-based classifier across three disaster classification tasks.

View on arXiv
Comments on this paper