231

On the Information-Theoretic Fragility of Robust Watermarking under Diffusion Editing

Main:15 Pages
Bibliography:1 Pages
1 Tables
Appendix:2 Pages
Abstract

Robust invisible watermarking embeds hidden information in images such that the watermark can survive various manipulations. However, the emergence of powerful diffusion-based image generation and editing techniques poses a new threat to these watermarking schemes. In this paper, we investigate the intersection of diffusion-based image editing and robust image watermarking. We analyze how diffusion-driven image edits can significantly degrade or even fully remove embedded watermarks from state-of-the-art robust watermarking systems. Both theoretical formulations and empirical experiments are provided. We prove that as a image undergoes iterative diffusion transformations, the mutual information between the watermarked image and the embedded payload approaches zero, causing watermark decoding to fail. We further propose a guided diffusion attack algorithm that explicitly targets and erases watermark signals during generation. We evaluate our approach on recent deep learning-based watermarking schemes and demonstrate near-zero watermark recovery rates after attack, while maintaining high visual fidelity of the regenerated images. Finally, we discuss ethical implications of such watermark removal capablities and provide design guidelines for future watermarking strategies to be more resilient in the era of generative AI.

View on arXiv
Comments on this paper