ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.11675
48
0

Beyond One-Way Pruning: Bidirectional Pruning-Regrowth for Extreme Accuracy-Sparsity Tradeoff

11 November 2025
Junchen Liu
Yi Sheng
ArXiv (abs)PDFHTML
Main:1 Pages
2 Figures
Bibliography:1 Pages
Abstract

As a widely adopted model compression technique, model pruning has demonstrated strong effectiveness across various architectures. However, we observe that when sparsity exceeds a certain threshold, both iterative and one-shot pruning methods lead to a steep decline in model performance. This rapid degradation limits the achievable compression ratio and prevents models from meeting the stringent size constraints required by certain hardware platforms, rendering them inoperable. To overcome this limitation, we propose a bidirectional pruning-regrowth strategy. Starting from an extremely compressed network that satisfies hardware constraints, the method selectively regenerates critical connections to recover lost performance, effectively mitigating the sharp accuracy drop commonly observed under high sparsity conditions.

View on arXiv
Comments on this paper