83

Learning to Refine: An Agentic RL Approach for Iterative SPARQL Query Construction

Main:10 Pages
5 Figures
Bibliography:4 Pages
Abstract

Generating complex, logically-sound SPARQL queries for multi-hop questions remains a critical bottleneck for Knowledge Graph Question Answering, as the brittle nature of one-shot generation by Large Language Models (LLMs) hinders reliable interaction with structured data. Current methods lack the adaptive policies needed to dynamically debug queries based on real-time execution feedback. This paper introduces a novel agentic framework where an LLM learns a resilient policy for the sequential process of iterative SPARQL construction. We show that a compact 3B-parameter model, trained exclusively via outcome-driven Reinforcement Learning (GRPO) without supervised fine-tuning, can learn effective policies for this task, discovering how to systematically recover from execution errors and refine its queries toward a correct answer. On a curated, executable single-answer subset of LC-QuAD 2.0, our agent achieves 49.7\% accuracy post-entity-linking, a significant 17.5 percentage point improvement over the strongest iterative zero-shot baseline. Further analysis reveals that while the agent's capability is driven by RL, its performance is enhanced by an explicit deliberative reasoning step that acts as a cognitive scaffold to improve policy precision. This work presents a generalizable blueprint for teaching agents to master formal, symbolic tools through interaction, bridging the gap between probabilistic LLMs and the structured world of Knowledge Graphs.

View on arXiv
Comments on this paper