ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.11916
40
0

An Analysis of Architectural Impact on LLM-based Abstract Visual Reasoning: A Systematic Benchmark on RAVEN-FAIR

14 November 2025
Sinan Urgun
Seçkin Arı
ArXiv (abs)PDFHTMLGithub (6★)
Main:20 Pages
9 Figures
Bibliography:3 Pages
4 Tables
Abstract

This study aims to systematically evaluate the performance of large language models (LLMs) in abstract visual reasoning problems. We examined four LLM models (GPT-4.1-Mini, Claude-3.5-Haiku, Gemini-1.5-Flash, Llama-3.3-70b) utilizing four different reasoning architectures (single-shot, embedding-controlled repetition, self-reflection, and multi-agent) on the RAVEN-FAIR dataset. Visual responses generated through a three-stage process (JSON extraction, LLM reasoning, and Tool Function) were evaluated using SSIM and LPIPS metrics; Chain-of-Thought scores and error types (semantic hallucination, numeric misperception) were analyzed. Results demonstrate that GPT-4.1-Mini consistently achieved the highest overall accuracy across all architectures, indicating a strong reasoning capability. While the multi-agent architecture occasionally altered semantic and numeric balance across models, these effects were not uniformly beneficial. Instead, each model exhibited distinct sensitivity patterns to architectural design, underscoring that reasoning effectiveness remains model-specific. Variations in response coverage further emerged as a confounding factor that complicates direct cross-architecture comparison. To estimate the upper-bound performance of each configuration, we report the best of five independent runs, representing a best-case scenario rather than an averaged outcome. This multi-run strategy aligns with recent recommendations, which emphasize that single-run evaluations are fragile and may lead to unreliable conclusions.

View on arXiv
Comments on this paper