Simple Lines, Big Ideas: Towards Interpretable Assessment of Human Creativity from Drawings
Assessing human creativity through visual outputs, such as drawings, plays a critical role in fields including psychology, education, and cognitive science. However, current assessment practices still rely heavily on expert-based subjective scoring, which is both labor-intensive and inherently subjective. In this paper, we propose a data-driven framework for automatic and interpretable creativity assessment from drawings. Motivated by the cognitive evidence proposed in [6] that creativity can emerge from both what is drawn (content) and how it is drawn (style), we reinterpret the creativity score as a function of these two complementary dimensions. Specifically, we first augment an existing creativity-labeled dataset with additional annotations targeting content categories. Based on the enriched dataset, we further propose a conditional model predicting content, style, and ratings simultaneously. In particular, the conditional learning mechanism that enables the model to adapt its visual feature extraction by dynamically tuning it to creativity-relevant signals conditioned on the drawing's stylistic and semantic cues. Experimental results demonstrate that our model achieves state-of-the-art performance compared to existing regression-based approaches and offers interpretable visualizations that align well with human judgments. The code and annotations will be made publicly available atthis https URL
View on arXiv