ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.13174
139
0

Warm-starting active-set solvers using graph neural networks

17 November 2025
Ella J. Schmidtobreick
Daniel Arnström
Paul Hausner
Jens Sjölund
    AI4CE
ArXiv (abs)PDFHTMLGithub (92★)
Main:10 Pages
8 Figures
Bibliography:3 Pages
2 Tables
Appendix:2 Pages
Abstract

Quadratic programming (QP) solvers are widely used in real-time control and optimization, but their computational cost often limits applicability in time-critical settings. We propose a learning-to-optimize approach using graph neural networks (GNNs) to predict active sets in the dual active-set solver DAQP. The method exploits the structural properties of QPs by representing them as bipartite graphs and learning to identify the optimal active set for efficiently warm-starting the solver. Across varying problem sizes, the GNN consistently reduces the number of solver iterations compared to cold-starting, while performance is comparable to a multilayer perceptron (MLP) baseline. Furthermore, a GNN trained on varying problem sizes generalizes effectively to unseen dimensions, demonstrating flexibility and scalability. These results highlight the potential of structure-aware learning to accelerate optimization in real-time applications such as model predictive control.

View on arXiv
Comments on this paper