ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.14064
123
0

CafeMed: Causal Attention Fusion Enhanced Medication Recommendation

18 November 2025
Kelin Ren
Chan-Yang Ju
Dong-Ho Lee
    CML
ArXiv (abs)PDFHTMLGithub
Main:5 Pages
3 Figures
Bibliography:1 Pages
Abstract

Medication recommendation systems play a crucial role in assisting clinicians with personalized treatment decisions. While existing approaches have made significant progress in learning medication representations, they suffer from two fundamental limitations: (i) treating medical entities as independent features without modeling their synergistic effects on medication selection; (ii) employing static causal relationships that fail to adapt to patient-specific contexts and health states. To address these challenges, we propose CafeMed, a framework that integrates dynamic causal reasoning with cross-modal attention for safe and accurate medication recommendation. CafeMed introduces two key components: the Causal Weight Generator (CWG) that transforms static causal effects into dynamic modulation weights based on individual patient states, and the Channel Harmonized Attention Refinement Module (CHARM) that captures complex interdependencies between diagnoses and procedures. This design enables CafeMed to model how different medical conditions jointly influence treatment decisions while maintaining medication safety constraints. Extensive experiments on MIMIC-III and MIMIC-IV datasets demonstrate that CafeMed significantly outperforms state-of-the-art baselines, achieving superior accuracy in medication prediction while maintaining the lower drug--drug interaction rates. Our results indicate that incorporating dynamic causal relationships and cross-modal synergies leads to more clinically-aligned and personalized medication recommendations. Our code is released publicly atthis https URL.

View on arXiv
Comments on this paper