All Papers
Title |
|---|
Title |
|---|

Standardized Patients (SP) are indispensable for clinical skills training but remain expensive, inflexible, and difficult to scale. Existing large-language-model (LLM)-based SP simulators promise lower cost yet show inconsistent behavior and lack rigorous comparison with human SP. We present EasyMED, a multi-agent framework combining a Patient Agent for realistic dialogue, an Auxiliary Agent for factual consistency, and an Evaluation Agent that delivers actionable feedback. To support systematic assessment, we introduce SPBench, a benchmark of real SP-doctor interactions spanning 14 specialties and eight expert-defined evaluation criteria. Experiments demonstrate that EasyMED matches human SP learning outcomes while producing greater skill gains for lower-baseline students and offering improved flexibility, psychological safety, and cost efficiency.
View on arXiv