ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.15159
242
0

Generating Natural-Language Surgical Feedback: From Structured Representation to Domain-Grounded Evaluation

19 November 2025
Firdavs Nasriddinov
Rafal Kocielnik
A. Anandkumar
Andrew J. Hung
    MedIm
ArXiv (abs)PDFHTMLGithub (82★)
Main:8 Pages
5 Figures
Bibliography:4 Pages
29 Tables
Appendix:21 Pages
Abstract

High-quality intraoperative feedback from a surgical trainer is pivotal for improving trainee performance and long-term skill acquisition. Automating natural, trainer-style feedback promises timely, accessible, and consistent guidance at scale but requires models that understand clinically relevant representations. We present a structure-aware pipeline that learns a surgical action ontology from real trainer-to-trainee transcripts (33 surgeries) and uses it to condition feedback generation. We contribute by (1) mining Instrument-Action-Target (IAT) triplets from real-world feedback text and clustering surface forms into normalized categories, (2) fine-tuning a video-to-IAT model that leverages the surgical procedure and task contexts as well as fine-grained temporal instrument motion, and (3) demonstrating how to effectively use IAT triplet representations to guide GPT-4o in generating clinically grounded, trainer-style feedback. We show that, on Task 1: Video-to-IAT recognition, our context injection and temporal tracking deliver consistent AUC gains (Instrument: 0.67 to 0.74; Action: 0.60 to 0.63; Tissue: 0.74 to 0.79). For Task 2: feedback text generation (rated on a 1-5 fidelity rubric where 1 = opposite/unsafe, 3 = admissible, and 5 = perfect match to a human trainer), GPT-4o from video alone scores 2.17, while IAT conditioning reaches 2.44 (+12.4%), doubling the share of admissible generations with score >= 3 from 21% to 42%. Traditional text-similarity metrics also improve: word error rate decreases by 15-31% and ROUGE (phrase/substring overlap) increases by 9-64%. Grounding generation in explicit IAT structure improves fidelity and yields clinician-verifiable rationales, supporting auditable use in surgical training.

View on arXiv
Comments on this paper