ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.15716
340
0

MACIE: Multi-Agent Causal Intelligence Explainer for Collective Behavior Understanding

11 November 2025
Abraham Itzhak Weinberg
    CML
ArXiv (abs)PDFHTMLGithub (27★)
Abstract

As Multi Agent Reinforcement Learning systems are used in safety critical applications. Understanding why agents make decisions and how they achieve collective behavior is crucial. Existing explainable AI methods struggle in multi agent settings. They fail to attribute collective outcomes to individuals, quantify emergent behaviors, or capture complex interactions. We present MACIE Multi Agent Causal Intelligence Explainer, a framework combining structural causal models, interventional counterfactuals, and Shapley values to provide comprehensive explanations. MACIE addresses three questions. First, each agent's causal contribution using interventional attribution scores. Second, system level emergent intelligence through synergy metrics separating collective effects from individual contributions. Third, actionable explanations using natural language narratives synthesizing causal insights. We evaluate MACIE across four MARL scenarios: cooperative, competitive, and mixed motive. Results show accurate outcome attribution, mean phi_i equals 5.07, standard deviation less than 0.05, detection of positive emergence in cooperative tasks, synergy index up to 0.461, and efficient computation, 0.79 seconds per dataset on CPU. MACIE uniquely combines causal rigor, emergence quantification, and multi agent support while remaining practical for real time use. This represents a step toward interpretable, trustworthy, and accountable multi agent AI.

View on arXiv
Main:26 Pages
4 Figures
Bibliography:5 Pages
8 Tables
Comments on this paper