ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.16920
212
0

DeltaDeno: Zero-Shot Anomaly Generation via Delta-Denoising Attribution

21 November 2025
C. Xu
Chengkan Lv
Qiyu Chen
Yunkang Cao
Feng Zhang
Zhengtao Zhang
    DiffM
ArXiv (abs)PDFHTML
Main:8 Pages
6 Figures
Bibliography:2 Pages
3 Tables
Abstract

Anomaly generation is often framed as few-shot fine-tuning with anomalous samples, which contradicts the scarcity that motivates generation and tends to overfit category priors. We tackle the setting where no real anomaly samples or training are available. We propose Delta-Denoising (DeltaDeno), a training-free zero-shot anomaly generation method that localizes and edits defects by contrasting two diffusion branches driven by a minimal prompt pair under a shared schedule. By accumulating per-step denoising deltas into an image-specific localization map, we obtain a mask to guide the latent inpainting during later diffusion steps and preserve the surrounding context while generating realistic local defects. To improve stability and control, DeltaDeno performs token-level prompt refinement that aligns shared content and strengthens anomaly tokens, and applies a spatial attention bias restricted to anomaly tokens in the predicted region. Experiments on public datasets show that DeltaDeno achieves great generation, realism and consistent gains in downstream detection performance. Code will be made publicly available.

View on arXiv
Comments on this paper