ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.17448
120
0

MMT-ARD: Multimodal Multi-Teacher Adversarial Distillation for Robust Vision-Language Models

21 November 2025
Yuqi Li
Junhao Dong
Chuanguang Yang
Shiping Wen
Piotr Koniusz
Tingwen Huang
Yingli Tian
Yew-Soon Ong
    VLM
ArXiv (abs)PDFHTMLGithub
Main:8 Pages
3 Figures
Bibliography:2 Pages
5 Tables
Abstract

Vision-Language Models (VLMs) are increasingly deployed in safety-critical applications, making their adversarial robustness a crucial concern. While adversarial knowledge distillation has shown promise in transferring robustness from teacher to student models, traditional single-teacher approaches suffer from limited knowledge diversity, slow convergence, and difficulty in balancing robustness and accuracy. To address these challenges, we propose MMT-ARD: a Multimodal Multi-Teacher Adversarial Robust Distillation framework. Our key innovation is a dual-teacher knowledge fusion architecture that collaboratively optimizes clean feature preservation and robust feature enhancement. To better handle challenging adversarial examples, we introduce a dynamic weight allocation strategy based on teacher confidence, enabling adaptive focus on harder samples. Moreover, to mitigate bias among teachers, we design an adaptive sigmoid-based weighting function that balances the strength of knowledge transfer across modalities. Extensive experiments on ImageNet and zero-shot benchmarks demonstrate that MMT-ARD improves robust accuracy by +4.32% and zero-shot accuracy by +3.5% on the ViT-B-32 model, while achieving a 2.3x increase in training efficiency over traditional single-teacher methods. These results highlight the effectiveness and scalability of MMT-ARD in enhancing the adversarial robustness of multimodal large models. Our codes are available atthis https URL.

View on arXiv
Comments on this paper