84

RadioMapMotion: A Dataset and Baseline for Proactive Spatio-Temporal Radio Environment Prediction

Main:11 Pages
8 Figures
Bibliography:2 Pages
4 Tables
Abstract

Radio maps (RMs), which provide location-based pathloss estimations, are fundamental to enabling proactive, environment-aware communication in 6G networks. However, existing deep learning-based methods for RM construction often model dynamic environments as a series of independent static snapshots, thereby omitting the temporal continuity inherent in signal propagation changes caused by the motion of dynamic entities. To address this limitation, we propose the task of spatio-temporal RM prediction, which involves forecasting a sequence of future maps from historical observations. A key barrier to this predictive approach has been the lack of datasets capturing continuous environmental evolution. To fill this gap, we introduce RadioMapMotion, the first large-scale public dataset of continuous RM sequences generated from physically consistent vehicle trajectories. As a baseline for this task, we propose RadioLSTM, a UNet architecture based on Convolutional Long Short-Term Memory (ConvLSTM) and designed for multi-step sequence forecasting. Experimental evaluations show that RadioLSTM achieves higher prediction accuracy and structural fidelity compared to representative baseline methods. Furthermore, the model exhibits a low inference latency, indicating its potential suitability for real-time network operations. Our project will be publicly released at:this https URLupon paper acceptance.

View on arXiv
Comments on this paper