
Weight quantization in spiking neural networks (SNNs) could further reduce energy consumption. However, quantizing weights without sacrificing accuracy remains challenging. In this study, inspired by astrocyte-mediated synaptic modulation in the biological nervous systems, we propose Temporal-adaptive Weight Quantization (TaWQ), which incorporates weight quantization with temporal dynamics to adaptively allocate ultra-low-bit weights along the temporal dimension. Extensive experiments on static (e.g., ImageNet) and neuromorphic (e.g., CIFAR10-DVS) datasets demonstrate that our TaWQ maintains high energy efficiency (4.12M, 0.63mJ) while incurring a negligible quantization loss of only 0.22% on ImageNet.
View on arXiv