ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.17568
78
0

Enhancing Robustness of Offline Reinforcement Learning Under Data Corruption via Sharpness-Aware Minimization

14 November 2025
Le Xu
Jiayu Chen
    AAML
ArXiv (abs)PDFHTML
1 Figures
Bibliography:3 Pages
7 Tables
Appendix:4 Pages
Abstract

Offline reinforcement learning (RL) is vulnerable to real-world data corruption, with even robust algorithms failing under challenging observation and mixture corruptions. We posit this failure stems from data corruption creating sharp minima in the loss landscape, leading to poor generalization. To address this, we are the first to apply Sharpness-Aware Minimization (SAM) as a general-purpose, plug-and-play optimizer for offline RL. SAM seeks flatter minima, guiding models to more robust parameter regions. We integrate SAM into strong baselines for data corruption: IQL, a top-performing offline RL algorithm in this setting, and RIQL, an algorithm designed specifically for data-corruption robustness. We evaluate them on D4RL benchmarks with both random and adversarial corruption. Our SAM-enhanced methods consistently and significantly outperform the original baselines. Visualizations of the reward surface confirm that SAM finds smoother solutions, providing strong evidence for its effectiveness in improving the robustness of offline RL agents.

View on arXiv
Comments on this paper