ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.17623
12
0

M2^22OE2^22-GL: A Family of Probabilistic Load Forecasters That Scales to Massive Customers

18 November 2025
Haoran Li
Zhe Cheng
Muhao Guo
Yang Weng
Yannan Sun
Victor Tran
John Chainaranont
    MoE
ArXiv (abs)PDFHTMLGithub
Main:4 Pages
3 Figures
Bibliography:1 Pages
Abstract

Probabilistic load forecasting is widely studied and underpins power system planning, operation, and risk-aware decision making. Deep learning forecasters have shown strong ability to capture complex temporal and contextual patterns, achieving substantial accuracy gains. However, at the scale of thousands or even hundreds of thousands of loads in large distribution feeders, a deployment dilemma emerges: training and maintaining one model per customer is computationally and storage intensive, while using a single global model ignores distributional shifts across customer types, locations, and phases. Prior work typically focuses on single-load forecasters, global models across multiple loads, or adaptive/personalized models for relatively small settings, and rarely addresses the combined challenges of heterogeneity and scalability in large feeders. We propose M2OE2-GL, a global-to-local extension of the M2OE2 probabilistic forecaster. We first pretrain a single global M2OE2 base model across all feeder loads, then apply lightweight fine-tuning to derive a compact family of group-specific forecasters. Evaluated on realistic utility data, M2OE2-GL yields substantial error reductions while remaining scalable to very large numbers of loads.

View on arXiv
Comments on this paper