32

PocketLLM: Ultimate Compression of Large Language Models via Meta Networks

Main:7 Pages
3 Figures
Bibliography:2 Pages
7 Tables
Abstract

As Large Language Models (LLMs) continue to grow in size, storing and transmitting them on edge devices becomes increasingly challenging. Traditional methods like quantization and pruning struggle to achieve extreme compression of LLMs without sacrificing accuracy. In this paper, we introduce PocketLLM, a novel approach to compress LLMs in a latent space via meta-networks. A simple encoder network is proposed to project the weights of LLMs into discrete latent vectors, which are then represented using a compact codebook. A lightweight decoder network is employed to map the codebook's representative vectors back to the original weight space. This method allows for significant compression of the large weights in LLMs, consisting solely of a small decoder, a concise codebook, and an index. Extensive experiments show that PocketLLM achieves superior performance even at significantly high compression ratios, e.g., compressing Llama 2-7B by 10x with a negligible drop in accuracy.

View on arXiv
Comments on this paper