ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.17883
146
0

ArticFlow: Generative Simulation of Articulated Mechanisms

22 November 2025
Jiong Lin
Jinchen Ruan
Hod Lipson
    AI4CE
ArXiv (abs)PDFHTML
Main:8 Pages
8 Figures
Bibliography:3 Pages
3 Tables
Appendix:1 Pages
Abstract

Recent advances in generative models have produced strong results for static 3D shapes, whereas articulated 3D generation remains challenging due to action-dependent deformations and limited datasets. We introduce ArticFlow, a two-stage flow matching framework that learns a controllable velocity field from noise to target point sets under explicit action control. ArticFlow couples (i) a latent flow that transports noise to a shape-prior code and (ii) a point flow that transports points conditioned on the action and the shape prior, enabling a single model to represent diverse articulated categories and generalize across actions. On MuJoCo Menagerie, ArticFlow functions both as a generative model and as a neural simulator: it predicts action-conditioned kinematics from a compact prior and synthesizes novel morphologies via latent interpolation. Compared with object-specific simulators and an action-conditioned variant of static point-cloud generators, ArticFlow achieves higher kinematic accuracy and better shape quality. Results show that action-conditioned flow matching is a practical route to controllable and high-quality articulated mechanism generation.

View on arXiv
Comments on this paper