ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.18299
105
0

MicCheck: Repurposing Off-the-Shelf Pin Microphones for Easy and Low-Cost Contact Sensing

23 November 2025
Steven Oh
Tai Inui
Magdeline Kuan
Jia-Yeu Lin
    SyDa
ArXiv (abs)PDFHTMLGithub (19676★)
Main:6 Pages
6 Figures
Bibliography:1 Pages
Abstract

Robotic manipulation tasks are contact-rich, yet most imitation learning (IL) approaches rely primarily on vision, which struggles to capture stiffness, roughness, slip, and other fine interaction cues. Tactile signals can address this gap, but existing sensors often require expensive, delicate, or integration-heavy hardware. In this work, we introduce MicCheck, a plug-and-play acoustic sensing approach that repurposes an off-the-shelf Bluetooth pin microphone as a low-cost contact sensor. The microphone clips into a 3D-printed gripper insert and streams audio via a standard USB receiver, requiring no custom electronics or drivers. Despite its simplicity, the microphone provides signals informative enough for both perception and control. In material classification, it achieves 92.9% accuracy on a 10-class benchmark across four interaction types (tap, knock, slow press, drag). For manipulation, integrating pin microphone into an IL pipeline with open source hardware improves the success rate on picking and pouring task from 0.40 to 0.80 and enables reliable execution of contact-rich skills such as unplugging and sound-based sorting. Compared with high-resolution tactile sensors, pin microphones trade spatial detail for cost and ease of integration, offering a practical pathway for deploying acoustic contact sensing in low-cost robot setups.

View on arXiv
Comments on this paper