ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.18444
73
0

SineProject: Machine Unlearning for Stable Vision Language Alignment

23 November 2025
Arpit Garg
Hemanth Saratchandran
Simon Lucey
    MU
ArXiv (abs)PDFHTML
Main:8 Pages
8 Figures
Bibliography:2 Pages
17 Tables
Appendix:25 Pages
Abstract

Multimodal Large Language Models (MLLMs) increasingly need to forget specific knowledge such as unsafe or private information without requiring full retraining. However, existing unlearning methods often disrupt vision language alignment, causing models to reject both harmful and benign queries. We trace this failure to the projector network during unlearning, its Jacobian becomes severely illconditioned, leading to unstable optimization and drift in cross modal embeddings. We introduce SineProject, a simple method that augments the frozen projector with sinusoidally modulated trainable parameters, improving the Jacobian's spectral conditioning and stabilizing alignment throughout unlearning. Across standard safety and privacy unlearning benchmarks using LLaVA v1.5 7B and 13B, SineProject reduces benign query refusals while achieving complete forgetting of targeted information, yielding state of the art forget retain trade offs with negligible computational overhead.

View on arXiv
Comments on this paper