ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.18464
66
0

Reliable Selection of Heterogeneous Treatment Effect Estimators

23 November 2025
Jiayi Guo
Zijun Gao
    CML
ArXiv (abs)PDFHTML
Main:10 Pages
6 Figures
Bibliography:3 Pages
2 Tables
Appendix:9 Pages
Abstract

We study the problem of selecting the best heterogeneous treatment effect (HTE) estimator from a collection of candidates in settings where the treatment effect is fundamentally unobserved. We cast estimator selection as a multiple testing problem and introduce a ground-truth-free procedure based on a cross-fitted, exponentially weighted test statistic. A key component of our method is a two-way sample splitting scheme that decouples nuisance estimation from weight learning and ensures the stability required for valid inference. Leveraging a stability-based central limit theorem, we establish asymptotic familywise error rate control under mild regularity conditions. Empirically, our procedure provides reliable error control while substantially reducing false selections compared with commonly used methods across ACIC 2016, IHDP, and Twins benchmarks, demonstrating that our method is feasible and powerful even without ground-truth treatment effects.

View on arXiv
Comments on this paper