ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.18691
48
0

EVCC: Enhanced Vision Transformer-ConvNeXt-CoAtNet Fusion for Classification

24 November 2025
Kazi Reyazul Hasan
M. Rahman
Wasif Jalal
Sadif Ahmed
Shahriar Raj
Mubasshira Musarrat
Muhammad Abdullah Adnan
    ViT
ArXiv (abs)PDFHTML
Main:8 Pages
5 Figures
Bibliography:2 Pages
7 Tables
Abstract

Hybrid vision architectures combining Transformers and CNNs have significantly advanced image classification, but they usually do so at significant computational cost. We introduce EVCC (Enhanced Vision Transformer-ConvNeXt-CoAtNet), a novel multi-branch architecture integrating the Vision Transformer, lightweight ConvNeXt, and CoAtNet through key innovations: (1) adaptive token pruning with information preservation, (2) gated bidirectional cross-attention for enhanced feature refinement, (3) auxiliary classification heads for multi-task learning, and (4) a dynamic router gate employing context-aware confidence-driven weighting. Experiments across the CIFAR-100, Tobacco3482, CelebA, and Brain Cancer datasets demonstrate EVCC's superiority over powerful models like DeiT-Base, MaxViT-Base, and CrossViT-Base by consistently achieving state-of-the-art accuracy with improvements of up to 2 percentage points, while reducing FLOPs by 25 to 35%. Our adaptive architecture adjusts computational demands to deployment needs by dynamically reducing token count, efficiently balancing the accuracy-efficiency trade-off while combining global context, local details, and hierarchical features for real-world applications. The source code of our implementation is available atthis https URL.

View on arXiv
Comments on this paper