ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.18816
116
1

SupLID: Geometrical Guidance for Out-of-Distribution Detection in Semantic Segmentation

International Conference on Information and Knowledge Management (CIKM), 2025
24 November 2025
Nimeshika Udayangani
S. Erfani
Christopher Leckie
    OODD
ArXiv (abs)PDFHTMLGithub
Main:9 Pages
7 Figures
Bibliography:1 Pages
6 Tables
Abstract

Out-of-Distribution (OOD) detection in semantic segmentation aims to localize anomalous regions at the pixel level, advancing beyond traditional image-level OOD techniques to better suit real-world applications such as autonomous driving. Recent literature has successfully explored the adaptation of commonly used image-level OOD methods--primarily based on classifier-derived confidence scores (e.g., energy or entropy)--for this pixel-precise task. However, these methods inherit a set of limitations, including vulnerability to overconfidence. In this work, we introduce SupLID, a novel framework that effectively guides classifier-derived OOD scores by exploiting the geometrical structure of the underlying semantic space, particularly using Linear Intrinsic Dimensionality (LID). While LID effectively characterizes the local structure of high-dimensional data by analyzing distance distributions, its direct application at the pixel level remains challenging. To overcome this, SupLID constructs a geometrical coreset that captures the intrinsic structure of the in-distribution (ID) subspace. It then computes OOD scores at the superpixel level, enabling both efficient real-time inference and improved spatial smoothness. We demonstrate that geometrical cues derived from SupLID serve as a complementary signal to traditional classifier confidence, enhancing the model's ability to detect diverse OOD scenarios. Designed as a post-hoc scoring method, SupLID can be seamlessly integrated with any semantic segmentation classifier at deployment time. Our results demonstrate that SupLID significantly enhances existing classifier-based OOD scores, achieving state-of-the-art performance across key evaluation metrics, including AUR, FPR, and AUP. Code is available atthis https URL.

View on arXiv
Comments on this paper