ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2511.18838
88
0

FVAR: Visual Autoregressive Modeling via Next Focus Prediction

24 November 2025
Xiaofan Li
Chenming Wu
Yanpeng Sun
Jiaming Zhou
Delin Qu
Yansong Qu
Weihao Bo
Haibao Yu
Dingkang Liang
    VGen
ArXiv (abs)PDFHTML
Main:8 Pages
5 Figures
Bibliography:2 Pages
4 Tables
Abstract

Visual autoregressive models achieve remarkable generation quality through next-scale predictions across multi-scale token pyramids. However, the conventional method uses uniform scale downsampling to build these pyramids, leading to aliasing artifacts that compromise fine details and introduce unwanted jaggies and moiré patterns. To tackle this issue, we present \textbf{FVAR}, which reframes the paradigm from \emph{next-scale prediction} to \emph{next-focus prediction}, mimicking the natural process of camera focusing from blur to clarity. Our approach introduces three key innovations: \textbf{1) Next-Focus Prediction Paradigm} that transforms multi-scale autoregression by progressively reducing blur rather than simply downsampling; \textbf{2) Progressive Refocusing Pyramid Construction} that uses physics-consistent defocus kernels to build clean, alias-free multi-scale representations; and \textbf{3) High-Frequency Residual Learning} that employs a specialized residual teacher network to effectively incorporate alias information during training while maintaining deployment simplicity. Specifically, we construct optical low-pass views using defocus point spread function (PSF) kernels with decreasing radius, creating smooth blur-to-clarity transitions that eliminate aliasing at its source. To further enhance detail generation, we introduce a High-Frequency Residual Teacher that learns from both clean structure and alias residuals, distilling this knowledge to a vanilla VAR deployment network for seamless inference. Extensive experiments on ImageNet demonstrate that FVAR substantially reduces aliasing artifacts, improves fine detail preservation, and enhances text readability, achieving superior performance with perfect compatibility to existing VAR frameworks.

View on arXiv
Comments on this paper